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Abstract. We repurpose tools from the theory of quantitative rectifiability to study the
qualitative rectifiability of measures in Rn, n ≥ 2. To each locally finite Borel measure µ,

we associate a function J̃2(µ, x) which uses a weighted sum to record how closely the mass
of µ is concentrated near a line in the triples of dyadic cubes containing x. We show that

J̃2(µ, ·) < ∞ µ-a.e. is a necessary condition for µ to give full mass to a countable family
of rectifiable curves. This confirms a conjecture of Peter Jones from 2000. A novelty of
this result is that no assumption is made on the upper Hausdorff density of the measure.
Thus we are able to analyze general 1-rectifiable measures, including measures which are
singular with respect to 1-dimensional Hausdorff measure.

1. Introduction

The aim of this article is to develop a multiscale analysis of 1-rectifiable measures.
Because there exist competing conventions for the terminology “rectifiable measure”
(cf. [Fed69, pp. 251–252] and [Mat95, p. 228]), we start by specifying its meaning in
the present paper. See Table 1.1 for a guide between the different conventions.

Definition 1.1 (Rectifiable measure). Let µ be a Borel measure on Rn and let m ≥ 1 be
a positive integer. We say that µ is m-rectifiable if there exist countably many bounded
Borel sets Ei ⊂ Rm and Lipschitz maps fi : Ei → Rn such that the union of the images
fi(Ei) have full measure, i.e. µ (Rn \

∪∞
i=1 fi(Ei)) = 0.

Remark 1.2. We do not require an m-rectifiable measure µ to be absolutely continuous
with respect to the m-dimensional Hausdorff measure Hm (see §2). If we wish to declare
this as an additional property of the measure, then we shall explicitly write µ ≪ Hm.

Remark 1.3. An equivalent condition for a Borel measure µ on Rn to be 1-rectifiable is
that there exist countably many rectifiable curves Γi ⊂ Rn such that µ(Rn \

∪
i Γi) = 0.

(Indeed, any Lipschitz map f : E → Rn, E ⊂ Rm extends to a global Lipschitz map
F : Rm → Rn. Thus, when m = 1, one may assume without loss of generality that the
sets Ei in Definition 1.1 are compact intervals [ai, bi] and take Γi = fi([ai, bi]).)

The qualitative theory of rectifiable sets and absolutely continuous rectifiable measures
in Euclidean spaces developed across the last century, beginning with the seminal work of
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Table 1.1. Cross-reference: rectifiable measures

this paper [Fed69] [Mat95]

µ is m-rectifiable Rn is countably (µ,m) rectifiable —

µ is m-rectifiable and µ(Rn) < ∞ Rn is (µ,m) rectifiable —

µ is m-rectifiable and µ ≪ Hm — µ is m-rectifiable

Besicovitch [Bes28, Bes38] and later generalized and improved upon in a series of papers
by Morse and Randolph [MR44], Moore [Moo50], Marstrand [Mar64], Mattila [Mat75] and
Preiss [Pre87]. In particular, in the presence of absolute continuity, these investigations
revealed a deep connection between the rectifiability of a measure and the asymptotic
behavior of the measure on small balls.

Definition 1.4 (Hausdorff densities). Let B(x, r) denote the closed ball in Rn with center
x ∈ Rn and radius r > 0. For each positive integer m ≥ 1, let ωm = Hm(Bm(0, 1)) denote
the volume of the unit ball in Rm. For all locally finite Borel measures µ on Rn, we define
the lower Hausdorff m-density Dm(µ, ·) and upper Hausdorff m-density D

m
(µ, ·) by

Dm(µ, x) := lim inf
r→0

µ(B(x, r))

ωmrm
∈ [0,∞]

and

D
m
(µ, x) := lim sup

r→0

µ(B(x, r))

ωmrm
∈ [0,∞]

for all x ∈ Rn. If Dm(µ, x) = D
m
(µ, x) for some x ∈ Rn, then we write Dm(µ, x) for the

common value and call Dm(µ, x) the Hausdorff m-density of µ at x.

For µ a Borel measure and E ⊂ Rn a Borel set, let µ E denote the restriction of µ
to E, i.e. the measure defined by the rule (µ E)(F ) = µ(E ∩ F ) for all Borel F ⊂ Rn.

Theorem 1.5 ([Mat75]). Let 1 ≤ m ≤ n−1. Suppose E ⊂ Rn is Borel and µ = Hm E
is locally finite. Then µ is m-rectifiable if and only if the Hausdorff m-density of µ exists
and Dm(µ, x) = 1 at µ-a.e. x ∈ Rn.

Theorem 1.6 ([Pre87]). Let 1 ≤ m ≤ n− 1. If µ is a locally finite Borel measure on Rn,
then µ is m-rectifiable and µ ≪ Hm if and only if the Hausdorff m-density of µ exists and
0 < Dm(µ, x) < ∞ at µ-a.e. x ∈ Rn.

There exist additional characterizations of absolutely continuous rectifiable measures
(e.g. in terms of the tangent measures of µ). For a full survey, we refer the reader to the
book [Mat95] by Mattila.

In general, m-rectifiable measures on Rn are not necessarily absolutely continuous with
respect to Hausdorff measure Hm. In the case m = 1, an interesting family of singular
1-rectifiable measures was recently identified by Garnett, Killip and Schul [GKS10].

Example 1.7 ([GKS10]). Let h : R → R be the 1-periodic function defined by

h(x) =

{
2 if x ∈ [1

3
, 2
3
) + Z

−1 otherwise
.
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Given 0 < δ ≤ 1/3, define the measure η on R to be the weak-∗ limit of measures ηk,

dηk :=
k−1∏
j=0

[1 + (1− 3δ)h(3jx)] dx.

Finally, assign µ = η× · · · × η to be the n-fold product of η. When δ = 1/3, the measure
µ is Lebesgue measure on Rn. On the other hand, Garnett, Killip and Schul proved that
if δ ≤ δn < 1/3 is sufficiently small, then µ is 1-rectifiable in the sense of Definition 1.1
(see Theorem 1.1 and the paragraph “In closing...” on p. 1678 of [GKS10]). Therefore, for
all n ≥ 2, there exist locally finite Borel measures µ on Rn with the following properties.

• The support of µ is Rn: µ(B(x, r)) > 0 for all x ∈ Rn and for all r > 0.
• The measure µ is doubling : there is C > 1 such that µ(B(x, 2r)) ≤ Cµ(B(x, r))
for all x in the support of µ and for all r > 0.

• Every Lipschitz graph (i.e. a set which up to an isometry of Rn has the form
{(x, f(x)) : f : Rm → Rn−m is Lipschitz} for 1 ≤ m ≤ n− 1) has µ measure zero.

• For every connected Borel set Γ ⊂ Rn, the set {x ∈ Γ : D1(H1 Γ, x) < ∞} has
µ measure zero.

• The measure µ is 1-rectifiable.
• The measure µ is singular with respect to H1.

In our opinion, general rectifiable measures that are allowed to be singular with respect
to Hausdorff measure are currently poorly understood. We believe that the following open
problem represents a major challenge in geometric measure theory.

Problem 1.8. For all 1 ≤ m ≤ n−1, find necessary and sufficient conditions in order for a
locally finite Borel measure µ on Rn to be m-rectifiable. (Do not assume that µ ≪ Hm.)

In this paper, we adapt tools from the theory of quantitative rectifiability to attack
Problem 1.8 in the case m = 1. In particular, we establish new necessary conditions for
a locally finite Borel measure µ on Rn to be 1-rectifiable. To state these results, we need
to introduce two concepts — L2 beta numbers and L2 Jones functions — which emanate
from [Jon90, DS91, DS93, BJ94] (also see [Paj96, Paj97, Lég99, Ler03, DT12]).

For all E ⊂ Rn and x ∈ Rn, let diamE := supy,z∈E |y−z| and dist(x,E) := infz∈F |x−z|
denote respectively the diameter of E and the distance of x to E.

Definition 1.9 (L2 beta numbers). For every locally finite Borel measure µ on Rn and
every bounded Borel set Q ⊂ Rn (typically we take Q to be a cube), define β2(µ,Q) by

(1.1) β2
2(µ,Q) := inf

ℓ

∫
Q

(
dist(x, ℓ)

diamQ

)2
dµ(x)

µ(Q)
∈ [0, 1],

where ℓ in the infimum ranges over all lines in Rn. If µ(Q) = 0, then we interpret (1.1)
as β2(µ,Q) = 0.

The beta number β2(µ,Q) records how well µ Q is fit by a linear regression model,
in an L2 sense. At one extreme, β2(µ,Q) = 0 if and only if µ Q = µ (Q∩ ℓ0) for some
line ℓ0 in Rn. At the other extreme, β2(µ,Q) ∼ 1 when the mass of µ Q is “scattered”
in the sense that µ Q assigns non-negligible mass “far away” from every line passing
through Q.
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One may think of several natural ways to “add up” the errors β2(µ,Q) at “all scales”.
Below we focus on two variations. Let ∆(Rn) denote the standard dyadic grid ; that is,
the collection of all (closed) dyadic cubes in Rn. Also, for each cube Q and λ > 0, let λQ
denote the concentric cube about Q that is obtained by dilating Q by a factor of λ.

Definition 1.10 (L2 Jones functions). Let µ be a locally finite Borel measure on Rn and
let r > 0. The ordinary L2 Jones function J2(µ, r, ·) for µ is defined by

J2(µ, r, x) :=
∑
Q

β2
2(µ, 3Q)χQ(x) ∈ [0,∞]

for all x ∈ Rn, where Q ranges over all Q ∈ ∆(Rn) with side length at most r. We
abbreviate the function J2(µ, 1, ·) starting at scale 1 by J2(µ, ·).

The density-normalized L2 Jones function J̃2(µ, r, ·) for µ is defined by

(1.2) J̃2(µ, r, x) :=
∑
Q

β2
2(µ, 3Q)

diamQ

µ(Q)
χQ(x) ∈ [0,∞]

for all x ∈ Rn, where Q ranges over all Q ∈ ∆(Rn) with side length at most r. (Here we

take 0/0 = 0.) We abbreviate the function J̃2(µ, 1, ·) starting at scale 1 by J̃2(µ, ·).

The ordinary L2 Jones function J2(µ, ·) has been used by several authors to study
the rectifiability of absolutely continuous measures of the form µ = H1 E, E ⊂ Rn.
Although we formulate Example 1.11, Theorem 1.12 and Theorem 1.13 for 1-rectifiable
measures only, analogous statements for m-rectifiable measures exist for all m ≥ 2.

Example 1.11 ([DS91]). Let E ⊂ Rn be Borel and 1-Ahlfors regular, i.e. suppose that
there exist constants c1, c2 > 0 such that c1r ≤ H1(E ∩ B(x, r)) ≤ c2r for all x ∈ E
and for all 0 < r < diamE. If µ = H1 E is 1-uniformly rectifiable in the sense of
David and Semmes [DS91, DS93], then there exists a constant C = C(µ) > 0 such that∫
Q
J2(µ, diamQ, ·) dµ ≤ C diamQ for every dyadic cube Q. In particular, J2(µ, ·) < ∞

µ-a.e.

Theorem 1.12 ([Paj97, Theorem 1.1]). Suppose K ⊂ Rn is compact and µ = H1 K is
finite. If both D1(µ, x) > 0 and J2(µ, x) < ∞ at µ-a.e. x ∈ Rn, then µ is 1-rectifiable.

Theorem 1.13 ([Paj97, Theorem 1.2]). If K ⊂ Rn is compact and 1-Ahlfors regular,
then µ = H1 K is 1-rectifiable if and only if J2(µ, ·) < ∞ µ-a.e.

By contrast, for singular rectifiable measures, J2(µ, ·) can be badly behaved.

Example 1.14. Let µ be a measure from Example 1.7 with defining parameter δ ≤ δn.
Since β2(µ, 3Q) ∼ 1 for every dyadic cube Q, the ordinary Jones function J2(µ, ·) = ∞
µ-a.e. Nevertheless, it follows from the estimates in [GKS10] or by Theorem A below that

the density-normalized Jones function J̃2(µ, ·) < ∞ µ-a.e.

In 2000, Peter Jones conjectured that weighted L2 Jones functions should lead to a
solution of Problem 1.8 (private communication). Nam-Gyu Kang obtained unpublished
results about this conjecture for measures supported on the four-corner Cantor set in
R2 (private communication). The general case is more complicated, as is evident by the
measures in Example 1.7.
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We are now ready to state our main results. Theorem A confirms Jones’ conjecture
by connecting the rectifiability of a measure to the pointwise behavior of its density-
normalized L2 Jones function. Corollary B shows that for absolutely continuous measures,
rectifiability of a measure also controls its ordinary L2 Jones function.

Theorem A. Let µ be a locally finite Borel measure on Rn. If µ is 1-rectifiable, then

J̃2(µ, x) < ∞ at µ-a.e. x ∈ Rn.

Corollary B. Let µ be a locally finite Borel measure on Rn. If µ is 1-rectifiable and
µ ≪ H1, then J2(µ, x) < ∞ at µ-a.e. x ∈ Rn.

In the special case of 1-dimensional Hausdorff measure restricted to a compact set,
Corollary B (together with Lemma 2.7) immediately yields the converse to Theorem 1.12.

Corollary C. Suppose that K ⊂ Rn is compact and µ = H1 K is finite. Then µ is
1-rectifiable if and only if both D1(µ, ·) > 0 and J2(µ, ·) < ∞ µ-a.e. x ∈ Rn.

A qualitative consequence of Theorem A is that a 1-rectifiable measure µ exhibits at
least one of two extreme behaviors at µ-almost every x in Rn: µ admits arbitrarily good 1-
dimensional linear approximations near x or µ has arbitrarily large 1-dimensional density
ratio near x. Thus, if one extreme fails, the other extreme must occur.

Example 1.15. Let µ be a measure from Example 1.7 with defining parameter δ ≤ δn.

Since J̃2(µ, x) < ∞ and β(µ, 3Q) ∼ 1 for every dyadic cube Q, the Hausdorff 1-density of
µ exists and D1(µ, x) = ∞ at µ-a.e. x ∈ Rn.

The proofs of Theorem A and Corollary B will be given in §2 (prerequisites) and §3
(main arguments). We remark that because the proofs rely on the Traveling Salesman
Theorem for rectifiable curves in Rn, it is not immediately clear how to use our method
to study m-rectifiable measures for m ≥ 2. Our work also leaves open the possibility
of finding sufficient conditions for rectifiability. Nevertheless, we believe that the idea

encoded in the definition of J̃2(µ, ·)—to normalize a multiscale quantity by the density of a
measure scale-by-scale—is a fruitful idea that should prove useful in additional situations.

To end the paper, in §4, we discuss some connections between Theorem A and Corollary
B, and prior work of Léger [Lég99] (Menger curvature), Lerman [Ler03] (curve learning)
and Tolsa [Tol12] (mass transport).

Acknowledgements. The authors would like to thank Marianna Csörnyei for insightful
discussions about this project. The authors would also like to thank an anonymous
referee for his or her careful reading of the paper. Part of this work was carried out while
both authors visited the Institute for Pure and Applied Mathematics (IPAM) during the
Spring 2013 long program on Interactions between Analysis and Geometry.

2. Traveling Salesman Theorem and Other Prerequisites

In this section, we recall an essential tool from the theory of quantitative rectifiability:
the Analyst’s Traveling Salesman Theorem. We also collect miscellaneous lemmas which
facilitate the proofs in section 3.
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Definition 2.1. Let E ⊂ Rn be any set. For every bounded set Q ⊂ Rn such that
E ∩Q ̸= ∅, define the quantity βE(Q) by

βE(Q) := inf
ℓ

sup
x∈E∩Q

dist(x, ℓ)

diamQ

where ℓ ranges over all lines in Rn. By convention, we set βE(Q) = 0 if E ∩Q = ∅.

Theorem 2.2 (Traveling Salesman Theorem, [Jon90, Oki92]). A bounded set E ⊂ Rn is
a subset of a rectifiable curve in Rn if and only if

β2(E) :=
∑

Q∈∆(Rn)

βE(3Q)2 diamQ < ∞.

Moreover, there exists a constant C = C(n) ∈ (1,∞) (independent of E) such that

• β2(E) ≤ CH1(Γ) for every connected set Γ containing E, and
• there exists a connected set Γ ⊃ E such that H1(Γ) ≤ C(diamE + β2(E)).

Corollary 2.3. For all n ≥ 2 and 3 < a < ∞, there is a constant C ′ = C ′(n, a) ∈ (1,∞)
such that if E ⊂ Rn is bounded and Γ is a connected set containing E, then∑

Q∈∆(Rn)

βE(aQ)2 diamQ ≤ C ′H1(Γ).

Proof. Let n ≥ 2 and let 3 < a < ∞ be given. For any dyadic cube Q ∈ ∆(Rn) and
integer k ≥ 0, let Q↑k ∈ ∆(Rn) denote the kth ancestor of Q, i.e. Q↑k is the unique dyadic
cube containing Q with diamQ↑k = 2k diamQ. Choose m ≥ 1 large enough depending
only on a such that aQ ⊂ 3Q↑m for all Q ∈ ∆(Rn) (e.g. m = ⌈log2 a⌉ will suffice.) Then
βE(aQ) ≤ (3 · 2m/a)βE(3Q

↑m) ≤ 2mβE(3Q
↑m) for all E ⊂ Rn and Q ∈ ∆(Rn). Hence∑

Q∈∆(Rn)

βE(aQ)2 diamQ ≤ 22m
∑

Q∈∆(Rn)

βE(3Q
↑m)2 diamQ

= 2m
∑

Q∈∆(Rn)

βE(3Q
↑m)2 diamQ↑m

= 2m(1+n)
∑

Q∈∆(Rn)

βE(3Q)2 diamQ ≤ 2m(1+n)CH1(Γ)

whenever E ⊂ Rn is bounded and Γ is a connected set containing E by Theorem 2.2. �
Remark 2.4. Inspecting the proof in [Oki92] shows that the constants C in Theorem 2.2
depends exponentially on the dimension n. Schul [Sch07b] formulated a version of the
Analysts’ Traveling Salesman Theorem that is valid in infinite-dimensional Hilbert space.
However, to obtain Theorem 2.2 with constants that are independent of the dimension
n, one must replace the grid of dyadic cubes appearing in the definition of β2(E) with a
“multiresolution family” of balls that are adapted to a sequence (Xk)

∞
k=1 of 2−k-nets for

the set E.

We now enumerate several lemmas that will be used in section 3, starting with some
facts from geometric measure theory. To fix conventions, we recall the definitions of
Hausdorff and packing measures in Rn. See [Mat95, Chapters 4–6] for general background.
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Definition 2.5 (Hausdorff and packing measures in Rn). Let s ≥ 0 be a real number.
Let E,E1, E2, . . . denote Borel sets in Rn. The s-dimensional Hausdorff measure Hs is
defined by Hs(E) = limδ→0Hs

δ(E) where

Hs
δ(E) = inf

{∑
i

(diamEi)
s : E ⊂

∪
i

Ei, diamEi ≤ δ

}
.

The s-dimensional packing premeasure P s is defined by P s(E) = limδ→0 P
s
δ (E) where

P s
δ (E) = sup

{∑
i

(2ri)
s : xi ∈ E, 2ri ≤ δ, i ̸= j ⇒ B(xi, ri) ∩B(xj, rj) = ∅

}
.

The s-dimensional packing measure Ps is defined by

Ps(E) = inf

{∑
i

P s(Ei) : E =
∪
i

Ei

}
.

Lemma 2.6. Let µ be a locally finite Borel measure on Rn. Then µ ≪ Hs if and only if
D

s
(µ, ·) < ∞ µ-a.e.

Lemma 2.6 is Exercise 4 in [Mat95, Chapter 6].

Lemma 2.7. Let µ be a locally finite Borel measure on Rn. If µ is m-rectifiable, then
Dm(µ, ·) > 0 µ-a.e.

To prove Lemma 2.7, we first prove an auxiliary lemma.

Lemma 2.8. Let E ⊂ Rm. If f : E → Rn is Lipschitz, then P s(f(E)) ≤ (Lip f)s P s(E)
and Ps(f(E)) ≤ (Lip f)s Ps(E).

Proof. Assume that P s(E) < ∞ and f : E → Rn is L-Lipschitz. Given ε > 0, pick η > 0
such that P s

η (E) ≤ P s(E) + ε. Fix 0 < δ ≤ Lη and let {Bn(f(xi), ri) : i ≥ 1} be an
arbitrary disjoint collection of balls in Rn centered in f(E) such that 2ri ≤ δ for all i ≥ 1.
Since f is L-Lipschitz,

f(Bm(xi, ri/L)) ⊂ Bn(f(xi), ri) for all i ≥ 1.

Thus {Bm(xi, ri/L) : i ≥ 1} is a disjoint collection of balls in Rm centered in E such that
2ri/L ≤ δ/L ≤ η. Hence

∞∑
i=1

(2ri)
s = Ls

∞∑
i=1

(2ri/L)
s ≤ LsP s

η (E) ≤ Ls(P s(E) + ε).

Taking the supremum over all δ-packings of f(E), we obtain P s
δ (f(E)) ≤ Ls(P s(E) + ε).

Therefore, letting δ → 0 and ε → 0, P s(f(E)) ≤ LsP s(E). The corresponding inequality
for the packing measure Ps follows immediately from the inequality for P s. �

Proof of Lemma 2.7. Let µ be a locally finite m-rectifiable Borel measure on Rn and
let A = {x ∈ Rn : Dm(µ, x) = 0}. To show that µ(A) = 0 it suffices to prove that
µ(A ∩ f(E)) = 0 for every bounded set E ⊂ Rm and every Lipschitz map f : E → Rn,
since µ is m-rectifiable. To that end fix E ⊂ Rm bounded and f : E → Rn Lipschitz.
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Then Pm(f(E)) ≤ (Lip f)mPm(E) < ∞ by Lemma 2.8 and the assumption that E ⊂ Rm

is bounded. Let λ > 0. Since Dm(µ, x) = 0 ≤ λ for all x ∈ A ∩ f(E), we have

µ(A ∩ f(E)) ≤ λPm(A ∩ f(E)) ≤ λPm(f(E))

by [Mat95, Theorem 6.11]. Thus, letting λ → 0, µ(A ∩ f(E)) = 0 for every bounded set
E ⊂ Rm and every Lipschitz map f : E → Rn. Therefore, µ(A) = 0, or equivalently,
Dm(µ, x) > 0 for µ-a.e. x ∈ Rn. �

Next we make some comparisons between the different L2 Jones functions defined in
the introduction.

Lemma 2.9. For every locally finite Borel measure µ, the sets

• {x ∈ Rn : J2(µ, r, x) < ∞} and {x ∈ Rn : J2(µ, r, x) = ∞}, and
• {x ∈ Rn : J̃2(µ, r, x) < ∞} and {x ∈ Rn : J̃2(µ, r, x) = ∞}

are independent of the parameter r > 0.

Proof. With µ and x fixed, changing the value of r > 0 inserts or deletes at most a finite

number of terms in the defining sums for J2(µ, r, x) and J̃2(µ, r, x). �

Below sideQ := diamQ/
√
n denotes the side length of a cube in Rn.

Lemma 2.10. Let µ be a locally finite Borel measure and let x ∈ Rn. If D
1
(µ, x) < ∞

and J̃2(µ, x) < ∞, then J2(µ, x) < ∞.

Proof. Let µ be a locally finite Borel measure on Rn, and assume that at some x ∈ Rn,

both D
1
(µ, x) < ∞ and J̃2(µ, x) < ∞. Since D

1
(µ, x) < ∞ there exist constants M < ∞

and r0 > 0 such that µ(B(x, r)) ≤ Mr for all 0 < r ≤ r0. In particular,

µ(Q) ≤ µ(B(x, diamQ)) ≤ M diamQ

for every cube Q containing x with sideQ ≤ r0/
√
n (that is, diamQ ≤ r0). Hence

J2(µ, r0/
√
n, x) =

∑
Q∈∆(Rn)

sideQ≤r0/
√
n

β2
2(µ, 3Q)χQ(x)

≤ M
∑

Q∈∆(Rn)

sideQ≤r0/
√
n

β2
2(µ, 3Q)

diamQ

µ(Q)
χQ(x) = MJ̃2(µ, r0/

√
n, x).

(2.1)

But J̃2(µ, r0/
√
n, x) < ∞ by Lemma 2.9, since J̃2(µ, x) < ∞. Hence J2(µ, r0/

√
n, x) < ∞

by (2.1). Therefore, since J2(µ, r0/
√
n, x) < ∞, we have J2(µ, x) < ∞ by Lemma 2.9. �

3. Proofs of the Main Results

The proof of Theorem A is based on Proposition 3.1. Roughly speaking, this proposition
says that if the lower density of a finite measure ν is uniformly bounded away from 0

along a subset E of a rectifiable curve Γ ⊂ Rn, then J̃2(ν, ·)|E has finite norm in L1(ν).

In particular, J̃2(ν, x) < ∞ at ν-a.e. x ∈ E.
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Proposition 3.1. Let ν be finite Borel measure on Rn and let Γ be a rectifiable curve.
If E ⊂ Γ is Borel and there exists a constant cE > 0 such that ν(B(x, r)) ≥ cEr for all
x ∈ E and for all 0 < r ≤ r0, then∫

E

J̃2(ν, r0, x) dν(x) . H1(Γ) + ν(Rn \ Γ),

where the implied constant depends only on n and cE (see (3.10)).

Proof of Proposition 3.1. Let ν be a finite Borel measure on Rn and let Γ be a rectifiable
curve in Rn. Assume that E ⊂ Γ is Borel and there exists a constant cE > 0 such that
ν(E ∩ B(x, r)) ≥ cEr for all x ∈ E and for all 0 < r ≤ r0. Our objective is to find

an upper bound for
∫
E
J̃2(ν, r0, x) dν(x) in terms of the ambient dimension n, the lower

Ahlfors regularity constant cE, the length of Γ, and ν(Rn \ Γ).
For the duration of the proof, we let a > 3 and ε > 0 denote fixed constants, depending

on at most n, which will be specified after (3.5). To proceed divide the dyadic cubes
∆(Rn) into three subfamilies ∆0, ∆Γ and ∆2, as follows:

∆0 = {Q ∈ ∆(Rn) : sideQ > r0 or ν(E ∩Q) = 0},
∆Γ = {Q ∈ ∆(Rn) : sideQ ≤ r0, ν(E ∩Q) > 0 and εβ2(ν, 3Q) ≤ βΓ(aQ)}, and

∆2 = {Q ∈ ∆(Rn) : sideQ ≤ r0, ν(E ∩Q) > 0 and βΓ(aQ) < εβ2(ν, 3Q)}.
Thus, the family ∆0 consists of all of the dyadic cubes in Rn that do not contribute to∫
E
J̃2(ν, r0, x) dν(x). And, of the remainder, the families ∆Γ and ∆2 consist of the cubes

for which either βΓ(aQ) or εβ2(ν, 3Q) is the dominant quantity, respectively. Reading off

the definitions of J̃2(ν, r0, ·), ∆0, ∆Γ and ∆2, it follows that∫
E

J̃2(ν, r0, x) dν(x) =
∑
Q

β2
2(ν, 3Q)

diamQ

ν(Q)

∫
E

χQ(x) dν(x)

=
∑

Q∈∆Γ∪∆2

β2
2(ν, 3Q) diamQ

ν(E ∩Q)

ν(Q)

≤ ε−2
∑
Q∈∆Γ

β2
Γ(aQ) diamQ︸ ︷︷ ︸
I

+
∑
Q∈∆2

β2
2(ν, 3Q) diamQ︸ ︷︷ ︸

II

.(3.1)

We shall estimate the terms I and II separately. The former will be controlled by H1(Γ)
and the latter will be controlled by ν(Rn \ Γ).

To estimate I, we note that by Corollary 2.3,

(3.2) I ≤ ε−2
∑

Q∈∆(Rn)

β2
Γ(aQ) diamQ ≤ C ′ε−2H1(Γ),

where C ′ is a finite constant determined by n and a.
In order to estimate II, decompose Rn \ Γ into a family T of Whitney cubes with the

following specifications.

• The union over all sets in T is Rn \ Γ.
• Each set in T is a half-open cube in Rn of the form (a1, b1]× · · · × (an, bn].
• If T1, T2 ∈ T , then either T1 = T2 or T1 ∩ T2 = ∅.
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• If T ∈ T , then dist(T,Γ) ≤ diamT ≤ 4 dist(T,Γ).

(To obtain this decomposition, modify the standard Whitney decomposition in Stein [St]
by replacing each closed cube with the corresponding half-open cube.) Here dist(T,Γ) =
infx∈T infy∈Γ |x− y|. For each k ∈ Z, we define

Tk = {T ∈ T : 2−k−1 < dist(T,Γ) ≤ 2−k}.

Also for every cube Q, we set T (Q) = {T ∈ T : ν(Q ∩ T ) > 0} and Tk(Q) = Tk ∩ T (Q).
Our plan is to first estimate β2

2(ν, 3Q) diamQ for each Q ∈ ∆2 and then estimate II.
Fix Q ∈ ∆2, say with sideQ = 2−k0 ≤ r0. We remark that if T ∈ Tk(3Q), then

k ≥ k1(k0) := k0 − 1− ⌊log2 3
√
n⌋ (to derive this, bound the distance between a point in

T ∩ 3Q and a point in E ∩Q by diam3Q). Pick any line ℓ in Rn such that

sup
z∈Γ∩aQ

dist(z, ℓ) ≤ 2βΓ(aQ) diam aQ < 2εβ2(ν, 3Q) diam aQ

= (2/3)aεβ2(ν, 3Q) diam 3Q.
(3.3)

To control β2
2(ν, 3Q), we divide 3Q into two sets, N (“near”) and F (“far”), where

N = {x ∈ 3Q : dist(x, ℓ) ≤ (2/3)aεβ2(ν, 3Q) diam 3Q}

and

F = {x ∈ 3Q : dist(x, ℓ) > (2/3)aεβ2(ν, 3Q) diam 3Q}.
It follows that

β2
2(ν, 3Q) ≤

∫
N

(
dist(x, ℓ)

diam 3Q

)2
dν(x)

ν(3Q)
+

∫
F

(
dist(x, ℓ)

diam3Q

)2
dν(x)

ν(3Q)

≤ (2/3)2a2ε2β2
2(ν, 3Q) +

∫
F

(
dist(x, ℓ)

diam3Q

)2
dν(x)

ν(3Q)
(3.4)

≤ 3(2/3)2a2ε2β2
2(ν, 3Q) + 2

∫
F

(
dist(x,Γ ∩ aQ)

diam 3Q

)2
dν(x)

ν(3Q)
,(3.5)

where to pass between (3.4) and (3.5) we used the triangle inequality, (3.3), and the
inequality (p + q)2 ≤ 2p2 + 2q2. Note that dist(x,Γ) ≤ diam3Q = 3

√
n sideQ for all

x ∈ F , because F ⊂ 3Q and Γ ∩ Q ̸= ∅ (since ν(E ∩ Q) > 0 for all Q ∈ ∆2). Hence,
specifying a = 3+6

√
n and 3(2/3)2a2ε2 = 1/2 (or generally a ≥ 3+6

√
n and ε ≤ 3/2a

√
6)

ensures that

dist(x,Γ ∩ aQ) = dist(x,Γ) for all x ∈ F

and

β2
2(ν, 3Q) ≤ 4

∫
F

(
dist(x,Γ)

diam3Q

)2
dν(x)

ν(3Q)
.

We now employ the Whitney decomposition. Since Γ ∩ 3Q ⊂ N (by (3.3)), we have
F ⊂

∪
T∈T (3Q) T ∩ 3Q =

∪∞
k=k1(k0)

∪
T∈Tk(3Q) T ∩ 3Q. Note that if T ∈ Tk(3Q) and x ∈ T ,

then dist(x,Γ) ≤ dist(T,Γ) + diamT ≤ 5 dist(T,Γ) ≤ 5 · 2−k. Thus,

(3.6) β2
2(ν, 3Q) ≤ 100

∞∑
k=k1(k0)

∑
T∈Tk(3Q)

(
2−k

diam3Q

)2
ν(T ∩ 3Q)

ν(3Q)
.
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To continue, recall that ν(E ∩ Q) > 0. Hence, we can locate z ∈ E ∩ Q and use our
assumption on E to conclude that

(3.7) ν(3Q) ≥ ν(B(z, 2−k0)) ≥ cE2
−k0 =

cE√
n
diamQ.

Therefore, combining (3.6) and (3.7), and writing diam3Q = 3diamQ, we obtain

(3.8) β2
2(ν, 3Q) diamQ ≤ 100

√
n

9cE

∞∑
k=k1(k0)

∑
T∈Tk(3Q)

(
2−k

diamQ

)2

ν(T ∩ 3Q).

This estimate is valid for every cube Q ∈ ∆2.
Equipped with (3.8), we can now bound II. Let l ∈ Z be the smallest integer with

2−l ≤ r0. For each k ≥ l, write ∆2(k) for the family of cubes in ∆2 with side length 2−k.
Then

II =
∞∑

k0=l

∑
Q∈∆2(k0)

β2
2(ν, 3Q) diamQ

≤ 100
√
n

9cE

∞∑
k0=l

∑
Q∈∆2(k0)

∞∑
k=k1(k0)

∑
T∈Tk(3Q)

(
2−k

√
n2−k0

)2

ν(T ∩ 3Q).

Let N0 = 4n denote the maximum overlap of cubes 3Q and 3Q′ where the cubes Q and
Q′ are (closed) dyadic cubes of equal side length. Then

II ≤ 100N0

√
n

9cE

∞∑
k0=l

∞∑
k=k1(k0)

∑
T∈Tk

(
2−k

√
n2−k0

)2

ν(T )

=
100N0

9cE
√
n

∞∑
k0=l

∞∑
k=k1(k0)

(1/4)k−k0ν
(∪

Tk

)
.

(Here we used our assumption that the Whitney cubes in T are pairwise disjoint.) Next,
set m := k1(k0)− k0 = 1 + ⌊log2 3

√
n⌋. Then, switching the order of summation,

II ≤ 100N0

9cE
√
n

∞∑
k=l−m

l+k−(l−m)∑
k0=l

(1/4)k−k0 ν
(∪

Tk

)
≤ 100N0

9cE
√
n

∞∑
k=l−m

∞∑
j=−m

(1/4)j ν
(∪

Tk

)
≤ 100N0

9cE
√
n

4m+1

3
ν(Rn \ Γ).

(Once again we used the disjointness of cubes in T .) Since 4m+1 ≤ 42+log2 3
√
n = 16 · 9n

and N0 = 4n, it follows that

(3.9) II ≤ (1600
3

· 4n
√
n/cE)ν(Rn \ Γ).

Finally, combining (3.1), (3.2) and (3.9), we conclude that∫
E

J̃2(ν, r0, x) dν(x) . H1(Γ) + ν(Rn \ Γ),
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where the implied constant depends only on n and cE. More explicitly,

(3.10)

∫
E

J̃2(ν, r0, x) dν(x) ≤ (8 + 16
√
n)C ′H1(Γ) + (1600

3
· 4n

√
n/cE) ν(Rn \ Γ),

where C ′ is the constant from Corollary 2.3 with a = 3 + 6
√
n and is exponential in the

dimension n. �
We are now ready to prove Theorem A and Corollary B.

Proof of Theorem A. Let µ be a locally finite Borel measure on Rn and assume that µ is
1-rectifiable. First, because µ is 1-rectifiable, we can find a countable family {Γi}∞i=1 of
rectifiable curves such that µ gives full mass to

∪∞
i=1 Γi. Second, because D1(µ, ·) > 0

µ-a.e. by Lemma 2.7, the measure µ gives full mass to
∪∞

j=1

∪∞
k=1Ej,k, where the set

Ej,k = {x ∈ Rn : µ(B(x, r)) ≥ 2−jr for all r ∈ (0, 2−k]}. Thus, to establish Theorem A, it

suffices to prove that J̃2(µ, x) < ∞ at µ-a.e. x ∈ Γi ∩ Ej,k for all i, j, k ≥ 1.
Suppose that Γ = Γi and E = Γi∩Ej,k for some i, j, k ≥ 1. Let ∆ denote the collection

of all dyadic cubes Q in Rn such that µ(E∩Q) > 0 and sideQ ≤ 2−k. Define the measure

ν := µ
∪
Q∈∆

3Q.

First observe that ν has bounded support, since E is bounded. Hence ν is finite, because
µ is locally finite. Second note that for every x ∈ E there exists Qx ∈ ∆ such that x ∈ Qx,
sideQx = 2−k and B(x, 2−k) ⊂ 3Qx. We conclude that ν(B(x, r)) = µ(B(x, r)) ≥ 2−jr
for all r ∈ (0, 2−k]. Thus∫

E

J̃2(µ, 2
−k, x) dµ(x) =

∑
Q

β2
2(µ, 3Q)

diamQ

µ(Q)

∫
E

χQ(x) dµ(x)

=
∑
Q

β2
2(ν, 3Q)

diamQ

ν(Q)

∫
E

χQ(x) dν(x)

=

∫
E

J̃2(ν, 2
−k, x) dν(x) . H1(Γ) + ν(Rn \ Γ) < ∞,

by Proposition 3.1. In particular, we have J̃2(µ, 2
−k, x) < ∞ at µ-a.e. x ∈ E. Therefore,

J̃2(µ, x) < ∞ at µ-a.e. x ∈ E, by Lemma 2.9. �
Proof of the Corollary B. Let µ be a locally finite Borel measure on Rn, and assume that

µ is 1-rectifiable and µ ≪ H1. On one hand, since µ is 1-rectifiable, we have J̃2(µ, ·) < ∞
µ-a.e. by Theorem A. On the other hand, since µ ≪ H1, we have D

1
(µ, ·) < ∞ µ-a.e. by

Lemma 2.6. Therefore, J2(µ, ·) < ∞ µ-a.e. by Lemma 2.10. �
To wrap up this section, we make two comments about variations of Proposition 3.1,

Theorem A and Corollary B and pose an open problem.

Remark 3.2. The proof of Proposition 3.1 carries through if, rather than use equation

(1.2), we defined the density-normalized Jones function J̃2(µ, r, x) by∑
Q∈∆(Rn)

sideQ≤r

β2
2(ν, λQ)

diamQ

ν(Q)
χQ(x)
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for some λ > 1 arbitrary. Under this scenario, the constant in (3.9) blows up as λ → 1.

Remark 3.3. In the proof of Proposition 3.1, we assumed that the dyadic cubes used to

define the density-normalized Jones function J̃2(µ, r, ·) were closed cubes. We could have
worked with open or half-open dyadic cubes instead, the only change to the proof being
that N0 = 4n (closed cubes) improves to N0 = 3n (open or half-open cubes). Therefore,
Theorem A and Corollary B are true independent of whether the Jones functions are
defined using closed, half-open or open dyadic cubes.

Problem 3.4. Formulate and prove a version of Theorem A in infinite-dimensional Hilbert
space, or show that such a generalization cannot exist. (See Remark 2.4.)

4. Related Work

We conclude by discussing some relevant prior work. Recall that the Menger curvature
c(x, y, z) of three points x, y, z ∈ Rn is defined to be the inverse of the radius of the circle
that passes through x, y and z. If x, y and z are collinear, then c(x, y, z) = 0. In [Lég99],
Léger proved that an integrability condition on Menger curvature is a sufficient test for
certain absolutely continuous measures to be 1-rectifiable.

Theorem 4.1 ([Lég99]). Suppose E ⊂ Rn is Borel, 0 < H1(E) < ∞ and µ = H1 E.
If

∫∫∫
c2(x, y, z) dµ(x)dµ(y)dµ(z) < ∞, then µ is 1-rectifiable.

Placed besides one another, Theorem A and Corollary B (necessary conditions) and
Theorem 4.1 (a sufficient condition) highlight the importance of “curvature” to the theory
of rectifiability. For an interpretation of beta numbers as a measure of curvature, for the
connection between beta numbers and Menger curvature, and for a survey of related
results, we refer the reader to [Paj02, Chapter 3] and Schul [Sch07a]. Also see Hahlomaa
[Hah08] for a version of Theorem 4.1 that is valid in metric spaces.

In [Ler03], Lerman proved that uniform control on an L2 Jones function ensures that
a measure gives positive mass to a rectifiable curve. Moreover, this result is quantitative.
To give a precise statement of Lerman’s “L2 curve learning theorem”, we must introduce
a variant of the ordinary Jones function, defined over shifted dyadic grids.

Definition 4.2 (Shifted dyadic grids). Redefine the standard dyadic grid ∆(Rn) from
above to be the collection of half-open dyadic cubes in Rn. For each x ∈ Rn, let x+∆(Rn)
denote the shifted dyadic grid that is obtained by translating each cube in ∆(Rn) by x.

Define ∆⃗(Rn) to be the union of the 2n shifted grids x+∆(Rn), x ∈ {0, 1/3}n.
Definition 4.3 (L2 Jones function, Lerman’s variant). Let µ be a locally finite Borel
measure on Rn. An L2 best fit line for µ in a cube Q is any line ℓQ which achieves the

minimum value of
∫
Q
dist(x, ℓQ)

2 dµ(x) among all lines in Rn. For every Q ∈ ∆⃗(Rn),

define β̂2(µ,Q) by

β̂2(µ,Q) := sup
R

sup
ℓR

∫
Q

(
dist(x, ℓR)

diamQ

)2
dµ(x)

µ(Q)
∈ [0, 1]

where R ranges over all cubes R ∈ ∆⃗(Rn) containing Q such that

2j
∗
0 ≤ sideR

sideQ
≤ 2j

∗
1 ,



14 MATTHEW BADGER AND RAANAN SCHUL

and ℓR ranges over all L2 best fit lines for µ in R. Here 2 ≤ j∗0 ≤ j∗1 are integer parameters.

We define the modified L2 Jones function Ĵ2(µ, r, ·) for µ by

Ĵ2(µ, r, x) =
∑
Q

β̂2(µ,Q)2χQ(x) for all x ∈ Rn,

where Q ranges over all cubes in ∆⃗(Rn) of side length at most r > 0. We abbreviate the

function Ĵ2(µ, 1, ·) starting at scale 1 by Ĵ2(µ, ·).

We now record Lerman’s L2 curve learning theorem. In the statement of the theorem,
sptµ = {x ∈ Rn : µ(B(x, r)) > 0 for all r > 0} denotes the support of µ.

Theorem 4.4 ([Ler03, Theorem 4.8]). Set parameters j∗0 = 2 and j∗1 = 24+log2⌈6480e
√
n⌉

(218
√
n < j∗1 < 219

√
n). There exist a constant C = C(n) > 1 and an absolute constant

λ > 1 with the following property. If µ is a locally finite Borel measure on Rn, Q1 ∈ ∆⃗(Rn),
and there exists M > 0 such that

Ĵ2(µ, λ sideQ1, x) ≤ M for all x ∈ sptµ ∩ λQ1,

then there exists a rectifiable curve Γ1 ⊂ λQ1 such that H1(Γ1) ≤ CeCM sideQ1 and
µ(Γ1) ≥ C−1e−CMµ(Q1).

Remark 4.5. By iterating Theorem 4.4, one can show that uniform control on Ĵ2(µ, ·)
implies that µ is 1-rectifiable. Let us describe the basic strategy. Suppose that µ is a
finite Borel measure supported on Q0 = (0, 1]n with Ĵ(µ, x) ≤ M for all x ∈ Q0 ∩ sptµ.
Invoking Lerman’s theorem once, we find a rectifiable curve Γ0 that charges a proportion
of the µ mass in Q0. Next divide Q0 \Γ0 into Whitney cubes (Ti)

∞
i=1, and invoke Lerman’s

theorem again on each cube Ti. This yields a countable family of rectifiable curves (Γi)
∞
i=1,

whose union charges a proportion of the µ mass in Q0\Γ0. To continue, divide Q0\
∪∞

i=0 Γi

into Whitney cubes. . . and so on. This procedure yields a countable family of rectifiable
curves which fully charge the mass of µ.

Unfortunately, the proof strategy described in Remark 4.5 cannot be used to show that
“Ĵ2(µ, x) < ∞ at µ-a.e. x ∈ Rn implies µ is 1-rectifiable”. On the other hand, this claim
could be proved if one possessed a “density version” of Lerman’s theorem.

Conjecture 4.6. A version of Theorem 4.4 holds with the hypothesis “Ĵ2(µ, x) ≤ M for
all x ∈ λQ1 ∩ sptµ” replaced by

“the set A = {x ∈ λQ1 : Ĵ2(µ, x) ≤ ε} satisfies µ(A) ≥ δµ(λQ1) for some
ε ≤ ε0(n) and δ ≥ δ0(n, ε)”

and the conclusion “µ(Γ1) ≥ C−1e−CMµ(Q1)” replaced by

“µ(A ∩ Γ1) ≥ C−1e−Cεµ(Q1) where C = C(n, δ)”.

We believe it should be possible to verify Conjecture 4.6 by rerunning the arguments
used by Lerman to prove Theorem 4.4, but we have not checked the details.

Finally, we wish to mention a recent paper by Tolsa [Tol12], which introduced the use
of tools from the theory of mass transportation to the theory of quantitative rectifiability.
In particular, Tolsa established a new characterization of uniformly rectifiable measures,
expressed in terms of the L2 Wasserstein distance W2(·, ·) between probability measures.
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It would be interesting to know to what extent can these new tools be used to study the
rectifiability of measures without an a priori assumption of Ahlfors regularity.
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